Home
Courses
Knowledge Base
Register
Login
✕
Home
Courses
Artificial Intelligence
Retrieval Augmented Generation (RAG): From Theory to Production
Retrieval Augmented Generation (RAG): From Theory to Production
Curriculum
8 Sections
67 Lessons
Lifetime
Expand all sections
Collapse all sections
1. RAG Foundations and Architecture
8
1.1
BEWX 1.1 What is Retrieval Augmented Generation and why it matters
1.2
BEWX 1.2 Problems RAG solves – hallucinations, knowledge cutoff, domain specificity
1.3
BEWX 1.3 RAG architecture overview – retrieval and generation components
1.4
BEWX 1.4 Comparing RAG vs fine-tuning vs prompt engineering
1.5
BEWX 1.5 Real-world applications of RAG systems
1.6
BEWX 1.6 Basic RAG workflow – step-by-step
1.7
BEWX 1.7 Advantages and limitations of RAG approach
1.8
BEWX 1.8 Setting up your development environment for RAG
2. LLM and Embedding Foundations
8
2.1
BEWX 2.1 Introduction to Large Language Models (LLMs)
2.2
BEWX 2.2 How LLMs process and generate text
2.3
BEWX 2.3 Understanding tokens and tokenization
2.4
BEWX 2.4 Embeddings explained – converting text to vectors
2.5
BEWX 2.5 Different embedding models – OpenAI, open-source alternatives
2.6
BEWX 2.6 Semantic similarity and cosine distance
2.7
BEWX 2.7 Choosing the right LLM for your RAG system
2.8
BEWX 2.8 API-based vs open-source LLM options
3. Information Retrieval Techniques
9
3.1
BEWX 3.1 Information retrieval overview and concepts
3.2
BEWX 3.2 Keyword-based search – TF-IDF and BM25
3.3
BEWX 3.3 Implementing BM25 for document retrieval
3.4
BEWX 3.4 Semantic search using embeddings
3.5
BEWX 3.5 Vector similarity search algorithms
3.6
BEWX 3.6 Hybrid search – combining keyword and semantic
3.7
BEWX 3.7 Metadata filtering and structured queries
3.8
BEWX 3.8 Query expansion and reformulation
3.9
BEWX 3.9 Evaluating retrieval quality – metrics and benchmarks
4. Vector Databases and Storage
8
4.1
BEWX 4.1 Introduction to vector databases
4.2
BEWX 4.2 Popular vector databases – Pinecone, Weaviate, Milvus, Qdrant
4.3
BEWX 4.3 PostgreSQL with pgvector extension
4.4
BEWX 4.4 Indexing strategies for vector databases
4.5
BEWX 4.5 Approximate Nearest Neighbor (ANN) algorithms
4.6
BEWX 4.6 Scaling vector databases for production
4.7
BEWX 4.7 Vector database comparison and selection guide
4.8
BEWX 4.8 Hands-on – Setting up and querying a vector database
5. Data Preparation and Chunking
8
5.1
BEWX 5.1 Document loading – PDFs, HTML, markdown, code
5.2
BEWX 5.2 Text extraction and cleaning
5.3
BEWX 5.3 Chunking strategies – fixed size, semantic, token-based
5.4
BEWX 5.4 Recursive character splitting
5.5
BEWX 5.5 Chunk overlap and context preservation
5.6
BEWX 5.6 Handling different document types
5.7
BEWX 5.7 Preprocessing and normalization
5.8
BEWX 5.8 Creating metadata for chunks
6. Building and Evaluating RAG Systems
10
6.1
BEWX 6.1 Building a simple RAG system – step-by-step
6.2
BEWX 6.2 Query processing pipeline
6.3
BEWX 6.3 Retriever implementation
6.4
BEWX 6.4 Prompt engineering for RAG context
6.5
BEWX 6.5 Handling hallucinations and grounding responses
6.6
BEWX 6.6 RAG evaluation metrics – relevance, faithfulness, correctness
6.7
BEWX 6.7 Using evaluation frameworks (Ragas, LangSmith)
6.8
BEWX 6.8 Measuring retrieval quality
6.9
BEWX 6.9 Measuring generation quality
6.10
BEWX 6.10 A/B testing RAG configurations
7. Advanced RAG Techniques
9
7.1
BEWX 7.1 Query rewriting and expansion
7.2
BEWX 7.2 Reranking retrieved documents with cross-encoders
7.3
BEWX 7.3 Multi-hop reasoning and complex queries
7.4
BEWX 7.4 Agentic RAG – agents making retrieval decisions
7.5
BEWX 7.5 Graph-based RAG systems
7.6
BEWX 7.6 Multimodal RAG – combining text and images
7.7
BEWX 7.7 Time-aware and temporal RAG
7.8
BEWX 7.8 Handling uncertainty and confidence scores
7.9
BEWX 7.9 Implementing filters and constraints
8. RAG Production and Optimization
7
8.1
BEWX 8.1 Deploying RAG systems to production
8.2
BEWX 8.2 Logging and monitoring RAG systems
8.3
BEWX 8.3 Cost optimization and latency reduction
8.4
BEWX 8.4 Caching strategies for retrieval
8.5
BEWX 8.5 Real-time RAG and streaming responses
8.6
BEWX 8.6 Security and data privacy in RAG
8.7
BEWX 8.7 Scaling RAG for enterprise use
This content is protected, please
login
and
enroll
in the course to view this content!
Modal title
Main Content